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required from the actual antenna, assuming equal power densities in the
given direction. Thus,
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For L £\, the maximum gain of a dipole antenna oceurs at ¢ = /2.
From Egs. (2-126) and (2-128), we have
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In the limit kL — 0, we have g(r/2) = 1.5 ; 80 the maximum gain of a
short dipole is 1.5. For a half-wave dipole, we can use Fig. 2.24 and
calculate & maximum gain of 1.64. Similarly, for a full-wave dipole,
the maximum gain is 2.41.

The input émpedance of an antenna is the impedance seen by the source,
that is, the ratio of the complex terminal voltage to the complex terminal
current. A knowledge of the reactive power, which cannot be obtained
from radiation zone fields, is needed to evaluate the input reactance.
The input resistance accounts for the radiated power (and dissipated

power if losses are present). We define the input resistance of a loss-
free antenna as

R = I%P (2-132)

where &, is the power radiated and I; is the input current. If losses are
?resent, a “loss resistance’” must be added to Eq. (2-132) to obtain the
input resistance. For the dipole antenna,
I { = I m Sin ’-EZI-{
and the input resistance is
- E,
ST i70) (-139)

In the limit as kL is made small, we find

_ n(kL)?
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The short dipole therefore has a very small input resistance. For exam-
ple, if L = 7/10, the input resistance is about 2 ohms. For the half-
wavelength dipole, we use Fig. 2-24 and Eq. (2-133) and find
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R;=R,=7310hms L = (2-135)
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For the full-wavelength dipole, Eq. (2-133) shows B; = «. This incor-
rect result is due to our initial choice of current, which has a null at the
source. The input resistance of the full-wavelength dipole is actually
large, but not infinite, and depends markedly on the wire diameter (see
Fig. 7-13).

2-11, On Waves in General. A complex function of coordinates
representing an instantaneous function according to Eq. (1-40) is called a
wave function. A wave function ¢, which may be either a scalar field or
the component of a vector field, may be expressed as

¥ = A(z,y,z)ei@eo (2-136)
where A and ® are real. The corresponding instantaneous funection is
'\/i A(x;y;z) cos [wt + ‘t(zyy)z)] (2-137)

The magnitude A of the complex function is the rms amplitude of the
instantaneous function. The phase ® of the complex function is the
initial phase of the instantaneous function. Surfaces over which the
phase is constant (instantaneous function vibrates in phase) are called
equiphase surfaces. These are defined by

®(z,y,2z) = constant (2-138)

Waves are called plane, cylindrical, or spherical according as their equi-
phase surfaces are planes, cylinders, or spheres. Waves are called uni-
form when the amplitude A is constant over the equiphase surfaces.
Perpendiculars to the equiphase surfaces are called wave normals. These
are, of course, in the direction of V& and are the curves along which the
phase changes most rapidly.

The rate at which the phase decreases in some direction is called the
phase constant in that direction. (The term phase constant is used even
though it is not, in general, a constant.) For example, the phase con-
stants in the cartesian coordinate directions are

ad 9P od
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These may be considered as components of a vector phase constant defined
by

g =—-Vve (2-140)

The maximum phase constant is therefore along the wave normal and is
of magnitude [V®].

The instantaneous phase of a wave is the argument of the cosine func-
tion of Eq. (2-137). A surface of constant phase is defined as

wt + $(z,y,2) = constant (2-141)
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that is, the instantaneous phase is constant. At any instant, the sur-
faces of constant phase coincide with the equiphase surfaces. As time
increases, & must decrease to maintain the constancy of Eq. (2-141), and
the surfaces of constant phase move in space. For any increment ds the
change in ® is .

0P od ad
Vd.ds = %dz—l—%dy-l—adz
To keep the instantaneous phase constant for an incremental increase in
time, we must have
wdt+Vd-ds =0
That is, the total differential of Eq. (2-141) must vanish. The ‘phase
velocity of a wave in a given direction is defined as the velocity of surfaces

of constant phase in that direction. For example, the phase velocities
along cartesian coordinates are

= — =2 _ 2
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vy = ~ 3%/9y _ B, (2-142)
v - w _ w
z d%/9z B,

Up = —7&ox1 = 2 (2-143)

which is the smallest phase velocity for the wave. Phase velocity is not a
vector quantity.
We can also express the wave function, Eq. (2-136), as

¥ = Okwa (2-144)

where © is a complex function whose imaginary part is the phase &.

A vector propagation constant can be defined in terms of the rate of change -

of © as
v= —VO = a4 78 (2-145)

where § is the phase constant of Eq. (2-140) and « is the vector attenu-
ation constant. The components of « are the logarithmic rates of change
of the magnitude of ¢ in the various directions.

In the electromagnetic field, ratios of components of E to components
of H are called wave impedances. The direction of a wave impedance is
defined according to the right-hand “cross-product” rule of component E
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rotated into component H. For example,
E

=2 =7, t=12Z 2-146
B Z Z ( )
is a wave impedance in the +z direction, while
E
—_— __z = - = 2"147
= 2., Z_, ( )

is a wave impedance in the —z direction. The wave impedance in the
+z direction involving E, and H. is

—E,
H,
The Poynting vector can be expressed in terms of wave impedances.

For example, the z component is

S, = (E x H¥), = E.H* — E,H*
= ZW+IH!I|2 + Zyz+|H2[2 (2"149)

= Zyit = —Zys~ (2-148)

The concept of wave impedance is most useful when the wave imped-
ances are constant over equiphase surfaces.

Let us illustrate the various concepts by specializing them to the uni-
form plane wave. Consider the z-polarized z-traveling wave in lossy
matter,

E, = Ey*"2¢7i¥

.._Eo

Hﬂ = =L e—k”ze—-ik’z
n

The amplitude of E. is Ec " and its phase is —k’z. Equiphase sur-
faces are defined by —k'z = constant, or, since k' is constant, by z = con-
stant. These are planes; so the wave is a plane wave. The amplitude
of E. is constant over each equiphase surface; so the wave is uniform.
The wave normals all point in the z direction. The cartesian compo-
nents of the phase constant are 8; = 8, = 0, 8, = k’; so the vector phase
constant is 8 = uk’. The phase velocity in the direction of the wave
normals is v, = w/k’. The cartesian components of the attenuation con-
stant are a, = o, = 0, o, = k”’; so the vector attenuation constant is
« = u,k”’. The vector propagation constant is

¥ = @+ g8 = wl” + ) = ugh

The wave impedance in the z direction is Z, = Z,,* = E;/H, = 9. Note
that the various parameters specialized to the uniform plane traveling
wave are all intrinsic parameters. This is, by definition, the meaning of
the word “intrinsic.”





